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In this paper we introduce a method to accelerate the computation of
steady state solutions of first-order hyperbolic problems such as the
Euler equations. The acceleration method is an improved version of the
so-called implicit residual smoother, The new version, the implicit
explicit residual smoother improves damping properties and numerical
examples are presented showing considerably reduction in number of
iterations needed to reach a steady state solution.  © 1993 Academic
Press, Inc.

1. INTRODUCTION

Today CFD, computational fluid dynamics, is more and
more becoming a design tool in various parts of indusirial
development, e.g., when designing aircraft or optimizing the
drag coefficients of cars. The inviscid flow equations are of
hyperbolic type and can be written in conservative form:
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5= 2 5 Filw). (1)
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In Eq. (1) m is the number of space dimensions and F; are
some flux functions. Both time dependent evolutions and
stationary solutions are of interest. In this paper we will
focus our attention on the cases when a steady state solution
is desired. One way to obtain such a solution would be to set
the left-hand side of Eq. (1} to zero. The right-hand side
should then be discretized in some manner and the system
obtained solved. Another commonly used method is to
actually integrate the time dependent equation for a long
enough time. This is the approach we are going to use in this
paper, with an explicit Runge-Kutta method as the time
marching method. The problem with explicit time marching
methods is that there are stability constraints on the size of
the time step that can be used. Typically, for a first-order
system, the allowed time step is of the same order as the
smallest space step. This restriction makes the computation
expensive with respect to CPU time. Since we are not really
interested in the time evolution of the solution, we can
forget about time accuracy in the iteration and design of the
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numerical method to accelerate the convergence towards a
steady state. The general idea behind all such methods is to
increase the effective time step that can be used by the
underlying scheme in order to propagate waves faster
through the computational domain.

Many ways of decreasing the CPU time have been intro-
duced and analyzed, e.g., iocal time stepping and multigrid
methods, In this paper we will analyze the concept of
implicit residual smoothing, from now on abbreviated IRS,
described in [4]. A new smoother, denoted the implicit
explicit residual smoother and abbreviated the IERS, which
considerably improves the convergence properties, will be
presented.

2. THE BASIC NUMERICAL METHOD

Let us define the basic numerical method for a test
problem in 1D. Consider the first-order system

v,= —0,, O0=x<2, 05y,
o(x, 0) = f(x) (2)
{0, t}=1

which has a steady state solution o(x, 7) =1 for ¢ > 2 inde-
pendent of the initial state f(x). Define a grid {x,=j-h},
J=1[0, 1, .., N], on the interval [0 < x<2r] with 2 =2r/N
and introduce a grid function U= {u,}/_, approximating
the solution » in Eq. (2). The term ¢, is approximated for
the grid function U using a second-order accurate finite
difference operator,

|
aujzz(do+'}’a(d)d+}2)“j

i
Aouj=§ (uj+l _“j_l)

{3)
(A_A+)2 uj=uj+2—4uj+[+6uj—4uj)1+uj_2-
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The parameter y, is chosen to improve damping properties
of the scheme for oscillatory modes and is often referred to
as the artifical viscosity coefficient. The approximation
Eq. (3) is used for the grid points j=[2, 3, .., N—2]. In the
grid points j=1 and j= N — 1, where Eq. (3) is not defined,
the artificial viscosity term is altered in some way. At the
boundary points the following conditions are imposed:

uy=2uy_y—uy_;

(4)
ug=1.
We now have a semidiscrete system
2 u=rw) (5)
o ’

which is a system of ordinary differential equations with the
components in the state vector U=Tu,, #;,..,l4y] as
unknowns. We will denote the right-hand side of Eq. (5)
as the residual. In our case an explicit three-stage
Runge-Kutta method on the following form is used to
integrate Eq. (5) in time

v =yr
UN=UO +a,-4t-RIUD)
UD=U 4o, d1- RIUM) (6)
UPN=UD ya, dt- RIUP)
Unl=pg®

with @, , ;= {06, 0.6, 1.0} resulting in a characteristic
polynomial,

pz)=1 +z+0.62%+0362°% (7

The convergence to a steady state this of this scheme
depends on wave propagation of smooth parts of the solu-
tion and on damping of the oscillatory parts. The strength
of the damping is tuned with the parameter y, in Eq. (3). To
obtain as effective wave propagation as possible we, of
course, want the time step Ar in Eq. (6) to be as large as
possible,

To analyze this basic numerical scheme with respect to
damping properties and to prepare for the introduction of
residual smoothers, we assume periodical boundary condi-
tions and express the solution in Fourier components

[ﬁfrs ey l"“!0, vy 1Qr]:

r

u=Y i,es,

w=-—r

r=~N/2. (8)

Here w represents the wave number of the Fourier compo-
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FIG. 1.

Fourier symbols and amplification factors.

nent with || small meaning smooth compenents and ||
large, oscillatory ones. By inserting Eq. (8) in the spatial
discretization Eq. (3) we obtain for every w an expression
for z in the characteristic polynomial Eq. (7),

2w)=1 (i sin(wh) — 16y, sin® (f‘;—h)) (9)

where 4 is the ratio between the time step Ar and the spatial
step h. To the left in Fig. 1 the Fourier symbol of our spatial
discretization is plotted, together with the stability region of
the Runge-Kutta scheme, In the figure the two plots at the
top are computed with [A= 1.5, y, = %] and the two at the
bottom with [4A=1.2, y,=£%7. Only the part of the symbol
with positive imaginary part is plotted since we have sym-
metry in the real axis. To the right in Fig. 1 we have the
amplification factors of the two schemes as a function of
E=wh.

3. THE IMPLICIT RESIDUAL SMOOTHER

The general idea with the implicit residual smoother is to
increase the time step Az used in the RK method with a
factor & to speed up the wave propagation and thereby
reach a steady state in fewer time steps. The scheme will be
unstable if « is chosen large, but can be restabilized by
applying an implicit smoother to the residual R in Eq. (5).
A new smoothed residual R is computed as

_ﬁijl +(1+28) Rj_ BRj+l=0€Rj
or

(1—f4_4,)R,=oR, (10)
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and the Runge-Kutta time stepping is performed with R
instead of R. The parameter § determines the strength of the
smoothing performed and if § is chosen as

B=Bla)z5(*—1) (11)

the scheme can be shown to be stable if the original
unsmoothed scheme is stable, This is shown by studying the
maximum of the imaginary part of Eq. (13), see [4]. The
consequence is that « can be chosen arbitrarily large and
thereby the effective time step o A7 may be arbitrarily large
as well. One could now believe that « as large as possible
should be the best choice, but in real applications it has been
found that « shouid not be larger than 2-3, see [1-5]. This
limitation can be explained in several ways. In Fig. 2 the
implicit residual smoother is applied to the model problem
for two different «. In the figure it can be seen that the
Fourier symbol is contracted to the imaginary axis and this
is more accentuvated for larger «. This leads to larger
amplification factors and poorer damping for jwh| large.
In reai life applications, effective damping for oscillatory
moedes is crucial since such disturbances are emitted from
boundaries and discontinuities in the solution. I these
disturbances are not damped out effectively the numerical
scheme can converge slower or even become unstable. The
Fourier transform of the stencil in Eq. (10} is

1
1 + 4B sin(wh/2)

and, together with the Fourier transform of the original
stencil Eq. (9), we obtain

IRS(w)=« (12)

1
) = S wh)2)
A (i sin(wh) — 16, sin* ("’7’”‘)) (13)

1 } alpha=§

FIG. 2.

Model problem with IRS.
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By analyzing Eq. (13) for whA=m it is easily seen that the
symbol is contracted towards the imaginary axis with a
factor a/(1+4p) or O(a~'). Hence, the larger « is, the
poorer damping properties we obtain. This effect is more
accentuated if problems in two and three space dimensions
are considered. In two dimensions we have a O(a~7)
contraction and in three dimensions, O« ~?%).

4. A NEW RESIDUAL SMOOTHER

To overcome the deteriorated damping of highly
oscillatory modes for large o in Eq. (10) we propose a new
version of the residual smoother. Compute the smoothed
residual R as

(1-B4_A4 )R, =a(l—yd_A_)R, (14)
The difference compared to the I-smoother, Eq. (10}, is the
operator (1 —yd _ A ) on the explicit side and from now on
we will refer to this version as the implicit—explicit residual

smoother or the IERS. The Fourier transform of this
smoothing operator is

1 + 4y sin*(wh/2)

IERS(w)=a7 + 4f sin*(wh/2)

(15)

and, combining this with Eq. (9), we obtain for the total
spatial discretization

1 + 4y sin*(wh/2)
1+ 48 sin%(wh/2)

A (i sin{wh) — 16y, sin* (%))

alpha=3

Hw)=

(16)

a]p'ha =15

5 0 2 R 0
FIG. 3. Model problem with IERS.
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By inserting wi=mn in Eq. (16) and demanding the same
damping properties as in Eq. (9) we obtain the condition lor
the parameter 7y,

(17)

In Fig. 3 four different cases of Fourier symbols for the
1ERS are plotted for different values of 2. It should be noted
that for |wh| ==, the spectra have more or less identical
behavior with a real part of — 164y,. With larger a the spec-
tral points for |wh| small are pushed away from origin,
indicating an increasing effective time step. One minor
problem for the IERS with small « can also be detected in
Fig. 3: The maximum of the imaginary part of the symbol is
larger than for the original scheme. We thercfore have a
potential risk for the scheme to become unstable.

In Fig. 4 the overshoot is plotted as a function of . The
overshoot is very moderate and decreases for larger « and,
since we are really interested in having large «, this is not a
crucial problem. One way of guaranteeing the Fourier sym-
bols remain inside the stability domain of the Runge-Kutta
scheme is to divide the parameter 4 by the number obtained
in Fig. 4. If, for example, we would like to use =10, 4
should be divided by = 1.1 and the effective time step wouid
then be 10/1.1 =9 times larger than for the original scheme.

In Fig. 3 we can also see that for large » the Fourier
symbol has a local minimum and that this minimum is
smaller for « larger. In Fig. 5 the imaginary part of the
Fourier symbol is plotted as a function of & = wh for four
different «. A more careful analysis of these extrema is
carried out in [2, p. B.22-24] and it is found that:

(a) A maximum O(1) for &, = O(x™")
(b) A minimum O{a~'?)for &, = Oz~ '7?).
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FIG. 4. Overshoot of IERS as function of effective time step.
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alpha =50
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FIG. 5. Imaginary part for large effective time step.

These extrema indicate a upper limit for the choice of «
which should not be larger than a value # for which the
imaginary part of the Fourier spectrum is equal for £ =4
and the minimum. A larger o forces the minimum to be
smaller than the first spectral point A. The upper limit for «
is then a function of the spatial step /4 and a smaller k leads
to a larger upper limit & In Fig. 5 we can see that this upper
limit & lies somewhere between 50 and 100 for this particular
choice of spatial step 4.

5. NUMERICAL EXAMPLES

Let us start with our model problem equation (1} and
integrate from some random initial state to a steady state.
With a steady state we mean that the L,-norm of the time
derivative of the solution is below 1075,

In Table I the number of iterations needed to compute
the steady state is listed for different numbers of grid points
N for the plain Runge-Kutta iteration and for the two
smoothed versions. For the two residual smoothers the best
choice of the parameter « is listed in the table. From the

TABLE!
Model Problem

Plain RK RK +1IRS RK +IERS

N No. iter. No. iter. Best o No. iter. Best o
64 104 64 2 34 8
128 174 91 3 41 11
256 306 123 4 50 14
5i2 571 171 5 66 17
1024 1088 250 6 87 22
2048 2119 364 8 118 29




IMPROVED IMPLICIT RESIDUAL SMCOOTHING

table it is clear that the required number of iterations is con-
siderably reduced when using the two smoothers with the
IERS as the best choice. It can also be noted that the relative
speedup of the IERS increases with the number of grid
points and that the optimal « also is larger for the TERS.

We now consider the quasi-one-dimensional FEuler
equations for flow in a converging—diverging channel. The
equations are written in the form

dg OF
YT _e  —lgxgl
o o ¢ ¥
pA puA
g=|pud |, F=|{(pw’+p)d |, g=|p%
EA ulE,+ p)A 0
P2,
E=—1t 18
=g (18)

where y = c,/c, is the ratio between the heat capacities at
constant pressure ¢, and constant volume c¢,. 4 is the
channel area given by

A(x)=1+ (1 —cos(nx)). —-1gx<l.

We use boundary data so that the computed steady
state solution contains a shock. The same Runge-Kutta
smoother is used as for the model problem above with the
difference that, in addition to the fourth-order artificial
viscosity, we now also have a second-order term in such a
way that Eq. (3) 1s altered to

1
S (Aot 4. P —pd 4w (19)

The parameter y, is for a given grid point j computed as

|pi_1—2p;+ py 0|

Yo=Ka- .
[Py 1+ 2p+ Pl
TABLE L
Quast-1D Euler Case
Plain RK RK +IRS RK +1ERS
N No, iter. No, iter, Best « No. iter, Best «
64 866 622 1.6 430 2.4
128 1746 1235 1.6 869 38
256 3427 1570 24 1106 50
512 7228 2469 32 1706 6.6
1024 13640 4047 38 2491 8.0
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This second-order dissipation is added with the purpose of
preventing unphysical oscillations near shocks. For more
details see, for example, [4]. In Table II we have the same
comparison between the methods as in Table I. The same
pattern can be noted, a considerable reduction in the
required number of iterations and the IERS as the best
choice, but the improvement is not as striking as in the
scalar case.

6. MULTIGRID ITERATION

Before talking about the multigrid method something
about the meaning of the word smoother must be said. On
one hand, we have a Runge-Kutta iteration method with or
without residual smoother and, on the other hand, will this
Runge-Kutta iteration be used as a smoothing operator in
the multigrid cycle. Hopefully the meaning of the word
smoother will be clear from the context in which it is used.
Multigrid iteration is another commonly used method of
increasing the convergence rate. The scheme described so
far is then used as the smoothing operator. The multigrid
method is more complicated to analyze with the Fourier
transform, since restriction and prolongation operators
between different grid levels couple the Fourier modes
together. See, for example [37, how this coupling affects the
damping properties. One rule of thumb when designing a
smoothing operator in a multigrid cycle is that the damping
for highly oscillatory modes shall be effective. We can
therefore expect the IERS to be a better choice than the IRS
in such a situation.

In Tables III and IV we have a simple multigrid case
with two grid levels. The most striking difference when
comparing Table III to table [ is that the optimal choice of
o for the TRS is so much lower in the multigrid case, which
is in line with the rule of thumb mentioned above.

For the Euler case in Table IV the difference between the
TERS and the IRS is less striking than in the scalar case, but
the gain is, about 40 %.

TABLE IIT
Model Problem, Multigrid with Two Grid Levels

Plain RK RK +1IRS RK +IERS
N No. iter. No. iter. Best a No. iter. Best «
64 46 45 1.7 27 8
128 67 54 1.8 28 7
256 114 74 2.1 30 10
512 205 107 24 33 16
1024 3717 165 26 40 23

2048 724 280 28 51 28

581/10772-7



296

TABLE 1V
Quasi-1D Euler Case, Multigrid with Two Grid Levels

Plain RK RK +1IRS RK +1ERS
N No. iter. No. iter. Best « No. iter. Best o
128 636 524 14 384 2.8
256 1219 295 1.6 603 34
512 2435 1445 1.8 920 4.0
1024 5003 2107 3.0 1285 50

7. CONCLUSIONS AND REMARKS

In this paper we have proposed the IERS, a new
improved version of the IRS. The IERS possesses much
better damping properties than the IRS when analyzed with
the Fourier transform, which indicates that a larger effective
time step o Ar could be used in real life applications. This is
also shown with numerical examples both for single grid
iterations and for multigrid cycles. Since damping proper-
ties deteriorate more in several space dimensions for the
IRS, the 1ERS would be a promising candidate for con-
vergence acceleration when it is generalized to 2D and 3D.
This can be done in a relatively straightforward manner.

One remark about number of iterations versus the actual
CPU time: In this paper the number of iterations are
presented for the examples rather than the CPU time. The
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extra cost for the IRS in 1D is to solve a three-diagonal
system in each Runge-Kutta stage for each state variable in
the system. For the IERS there is an additional evaluation
of an explicit three-point stencil. This computational over-
head is less significant if the equation itself and the numeri-
cal scheme are complicated than for the simple scalar case.
In the quasi-1D case the overhead is approximately 15%
for the IRS and 30% for the IERS, compared to the
unsmoothed iteration.

Finally, a remark about the choice of the time stepping.
There are a large variety of Runge~Kutta schemes in use for
the numerical method described in this paper. Two to five
stages are used and sometime the artificial viscosity are not
evaluated in all stages. Thé important property of the IERS
is the non-contracting Fourier symbol which is important
for all choices of Runge-Kutta time stepping.
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